(B) Determine uma base a dimensão de S
(C)O que representa geometricamente S?
1 Resposta
Explicação passo-a-passo:
O espaço S é caracterizado por ter sua terceira componente igual a soma das duas primeiras.
Para que S seja um subspaço vetorial de R³ a soma de quaisquer dois vetores de S deve pertencer a S e o produto de um escalar real λ com um vetor de S deve pertencer a S.
Sejam u = (x1, y1, x1 + y1) ∈ S e v = (x2, y2, x2 + y2) ∈ S
u + v = (x1 + x2, y1 + y2, x1 + y1 + x2 + y2) ∈ S
Talvez possa parecer que não, mas se colocar-mos assim ficara mas claro.
u + v = (x1 + x2, y1 + y2, (x1 + y1) + (x2 + y2)) ∈ S, a terceira componente é igual a soma das duas primeiras.
Seja λ ∈ R
λ.u = (λx1, λx2, λ(x1 + x2) = (λx1, λx2, λx1 + λx2) ∈ S, pois a terceira componente é igual a soma das duas primeiras componentes.
Logo S é subspaço se R³
Mais perguntas de Matemática
Top Semanal
Top Perguntas

Você tem alguma dúvida?
Faça sua pergunta e receba a resposta de outros estudantes.