b) Um vetor unitário simultaneamente ortogonal aos vetores BC e BD.
1 Resposta
Temos os seguintes pontos:
A partir desses pontos a questão faz as seguintes perguntas:
a) O valor de m para que os pontos sejam coplanares.Para que os pontos sejam coplanares, devemos fazer um determinante com os três vetores formados pelos pontos. Para encontrar esses tais vetores, basta trazê-los para a origem, ou seja, fazer a subtração do ponto final pelo inicial:
Agora é só montar o determinante, caso o resultado seja "0", quer dizer então que os pontos são coplanares, já que se for diferente de "0", o resultado é que eles não são coplanares.
Vamos começar montando os vetores:
Para encontrar um vetor que sejam ortogonal, ou seja, perpendicular simultâneamente a esses dois vetores, basta calcular o produto vetorial entre os vetores BC e BD, pois como sabemos o resultado do produto vetorial é sempre um vetor que é perpendicular aos outros dois envolvidos.
Como normalmente não colocamos as componentes, então temos que o vetor perpendicular é dado por:
Mas note que esse vetor não é unitário, pois o seu módulo é diferente de 1, então vamos partir para o versor que é um múltiplo desse vetor e é justamente o que procuramos (unitário). O versor é dado pela divisão do vetor pelo seu módulo.
Espero ter ajudado
Mais perguntas de Matemática
Top Semanal
Top Perguntas

Você tem alguma dúvida?
Faça sua pergunta e receba a resposta de outros estudantes.